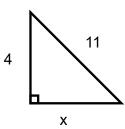
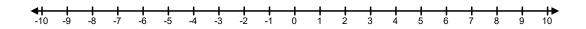
A1 S2 w10d4 10.2 Simplifying Radicals

Alg I Week 10 Friday Warm Up

- 1. Skill 17: Solve the Quadratic by Completing the square. Leave answers in simplified radical form or as an integer. $k^2 + 6k 59 = 0$
- 2. Simplify the radicals.


a.
$$\sqrt{32}$$

b.
$$5\sqrt{24}$$


c.
$$\sqrt{3} \cdot \sqrt{6}$$

d.
$$4\sqrt{8} \cdot 3\sqrt{6}$$

3. Use the Pythagorean Theorem to solve.

- 4. Skill 7: Write the equation of a line perpendicular to $y = \frac{2}{5}x + 2$ and passes through the point (6, -7)
- 5. Skill 4: Solve and graph the answer on a number line. $|x-5| \le 3$

A1 S2 w10d4 10.2 Simplifying Radicals

Notes 10-2 Simplifying Radicals Alg 1 Week 10 Fri

Sometimes you can simplify radical expressions that contain variables. A variable with an even exponent is a perfect square. A variable with an odd exponent is the product of a perfect square and the variable. For example, $n^3 = n^2 \cdot n$, so $\sqrt{n^3} = \sqrt{n^2 \cdot n}$. In this lesson, assume that all variables in radicands represent nonnegative numbers.

Problem 2 Removing Variable Factors

What is the simplified form of $\sqrt{54n^7}$?

Got lt? 2. What is the simplified form of $-m\sqrt{80m^9}$?

You can use the Multiplication Property of Square Roots to write $\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$.

Problem 3 Multiplying Two Radical Expressions

What is the simplified form of $2\sqrt{7}t \cdot 3\sqrt{14t^2}$?

$$2\sqrt{7}t \cdot 3\sqrt{14}t^5$$

Got It? 3. What is the simplified form of each expression in parts (a)-(c)?

a.
$$3\sqrt{6} \cdot \sqrt{18}$$

b.
$$\sqrt{2a} \cdot \sqrt{9a^3}$$

b.
$$\sqrt{2a} \cdot \sqrt{9a^3}$$
 c. $7\sqrt{5x} \cdot 3\sqrt{20x^5}$

A1 S2 w10d4 10.2 Simplifying Radicals

Simplifying Radicals 10.2

Simplify each radical expression. Show all work!

2.
$$\sqrt{200}$$

4.
$$-5\sqrt{112}$$

6.
$$3\sqrt{121}$$

7.
$$\sqrt{63t^4}$$

8.
$$-2b\sqrt{136b^2}$$

Simplify each product.

10.
$$\sqrt{5} \cdot \sqrt{70}$$

10.
$$\sqrt{5} \cdot \sqrt{70}$$
 11. $2\sqrt{3} \cdot \sqrt{96}$

12.
$$-4\sqrt{7} \cdot \sqrt{42}$$

13.
$$\sqrt{4a} \cdot \sqrt{12a^5}$$